(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0, y) → 0
f(s(x), y) → f(f(x, y), y)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0', y) → 0'
f(s(x), y) → f(f(x, y), y)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
f(0', y) → 0'
f(s(x), y) → f(f(x, y), y)
Types:
f :: 0':s → a → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_a2_0 :: a
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(6) Obligation:
TRS:
Rules:
f(
0',
y) →
0'f(
s(
x),
y) →
f(
f(
x,
y),
y)
Types:
f :: 0':s → a → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_a2_0 :: a
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_0':s3_0(
n5_0),
hole_a2_0) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n5
0)
Induction Base:
f(gen_0':s3_0(0), hole_a2_0) →RΩ(1)
0'
Induction Step:
f(gen_0':s3_0(+(n5_0, 1)), hole_a2_0) →RΩ(1)
f(f(gen_0':s3_0(n5_0), hole_a2_0), hole_a2_0) →IH
f(gen_0':s3_0(0), hole_a2_0) →RΩ(1)
0'
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
f(
0',
y) →
0'f(
s(
x),
y) →
f(
f(
x,
y),
y)
Types:
f :: 0':s → a → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_a2_0 :: a
gen_0':s3_0 :: Nat → 0':s
Lemmas:
f(gen_0':s3_0(n5_0), hole_a2_0) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':s3_0(n5_0), hole_a2_0) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(11) BOUNDS(n^1, INF)
(12) Obligation:
TRS:
Rules:
f(
0',
y) →
0'f(
s(
x),
y) →
f(
f(
x,
y),
y)
Types:
f :: 0':s → a → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_a2_0 :: a
gen_0':s3_0 :: Nat → 0':s
Lemmas:
f(gen_0':s3_0(n5_0), hole_a2_0) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':s3_0(n5_0), hole_a2_0) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(14) BOUNDS(n^1, INF)